Note

Structure and conformational features of an alkali- and water-soluble galactofuranan from the cell walls of *Eupenicillium crustaceum*

Juan Antonio Leal ^a, Alicia Prieto ^a, Begoña Gómez-Miranda ^a, Jesús Jiménez-Barbero ^b and Manuel Bernabé ^b

(Received October 19th, 1992; accepted December 14th, 1992)

Fungal cell walls are mainly composed of polysaccharides. Some of these polymers are valuable chemotaxonomic markers and their characterisation can be of interest as a tool to rearrange some complex genera¹. In addition, galactofuranose-containing polysaccharides are being thoroughly studied because these residues act as antigenic determinants^{2,3}. A galactomannan, with side chains of $(1 \rightarrow 5)$ -linked- β -D-galactofuranosyl residues attached to the mannan, was extracted from hyphae of Aspergillus niger⁴. β - $(1 \rightarrow 5)$ -linked galactose polymers have also been found in Penicillium citrinum extracellular polysaccharide⁵ and in the cell wall of some species of Penicillium and Aspergillus⁶.

The chemical composition of cell-wall fractions has previously been studied for some species of the genus *Eupenicillium*⁷. Now we report on the structural characterisation of a polysaccharide purified from the alkali- and water-soluble cell-wall fraction of the type species, *E. crustaceum*.

Alkali-extractable fraction F1 (see Experimental) amounted to 13–18% of the wall material, and water-soluble fraction F1S represented 7–8% of the total F1. Gel filtration of F1S on Sepharose CL-6B gave one main polysaccharide (F1S-B; $M_{\rm W}=17~{\rm k}$) and a small proportion of a high molecular weight polysaccharide (F1S-A). F1S and F1S-B contained galactofuranose as their major component and a small proportion of mannose (partial hydrolysis with 0.05 M $\rm H_2SO_4$). Similar results were obtained with the Saeman hydrolysis.

Fraction F1S-B consumed 0.8 mol of periodate/hexose residue. Threitol was the main component detected by GLC after periodate oxidation, Smith degradation, and complete hydrolysis, revealing that the main type of linkage is either $(1 \rightarrow 4)$ - or $(1 \rightarrow 5)$ -linked galactosyl residues. The absorption bands at 870 and 810 cm⁻¹ of the F1S-B fraction are characteristic of a β -galactofuranan⁸. Methylation

^a Centro de Investigaciones Biológicas, C.S.I.C., Velázquez, 144, 28006 Madrid (Spain)

^b Grupo de Carbohidratos, Instituto de Química Orgánica, C.S.I.C., Juan de la Cierva, 3, 28006 Madrid (Spain)

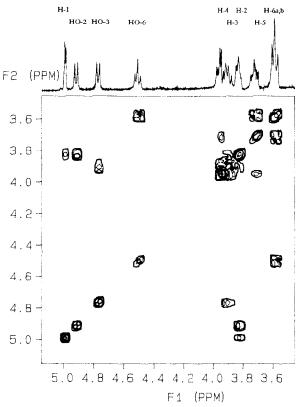


Fig. 1. COSY spectrum (Me_2SO-d_6 , $80^{\circ}C$, 300 MHz) of the water-soluble F1S-B cell-wall polysaccharide of *E. crustaceum*. The hydroxyl groups and the ring protons have been labeled in the 1D spectrum.

analysis of F1S-B gave, 1,4,5-tri-O-acetyl-2,3,6-tri-O-methylgalactitol, consistent with $(1 \rightarrow 4)$ - or $(1 \rightarrow 5)$ -linked galactosyl residues.

The high-resolution ¹H NMR and proton-decoupled ¹³C NMR spectra of F1S-B in Me₂SO-d₆ showed only one anomeric signal, indicating that the polysaccharide contains a monosaccharide repeating unit and that it is homogeneous. Three hydroxyl groups appeared in the Me₂SO-d₆ ¹H NMR spectrum. The peak at ca. 109 ppm for the anomeric carbon indicates a 1,2-trans furanoside⁹. The COSY spectrum (Fig. 1) allowed assignment of all the signals in a straightforward way, so that hydroxyl protons HO-2, HO-3, and HO-6 were unequivocally identified. On the other hand, the one-bond heteronuclear correlation experiment enabled assignment of the ¹³C NMR spectrum, thus allowing comparison with previously reported chemical shifts for methyl furanosides.

All the data indicate that the polysaccharide consists of $(1 \rightarrow 5)$ -linked β -D-galactofuranosyl residues. The chemical shifts agree with those reported by Gorin and Mazurek¹⁰ for a β - $(1 \rightarrow 5)$ -galactofuranose tetrasaccharide. The 2D NOE spectrum showed cross-peaks H-1/H-5 and H-1/H-6, thus supporting this conclusion.

TABLE I Expected vicinal proton-proton coupling constants for the different conformations of the D-galacto-furanose ring according to the equation proposed by Altona¹² and using $\Phi_{\rm m}=40$

P	Conformation	Φ _{1,2} (°)	J _{1,2} (Hz)	Φ _{2,3} (°)	J _{2,3} (Hz)	Φ _{3,4} (°)	J _{3,4} (Hz)
18	3 <i>E</i>	143	4.0	-162	6.2	167	7.3
36	${}^{3}_{4}T_{3}$	130	2.7	- 155	5.3	169	7.5
54	${}^{4}E^{3}$	117	1.8	-146	3.9	167	7.3
72	4T_0	103	1.2	-134	2.9	160	7.0
90	${}_{0}\overset{-0}{E}$	91	1.2	- 120	1.6	151	6.3
108	$^{1}_{1}T_{0}$	81	1.4	- 107	1.0	138	5.1
126	^{1}E	75	1.7	-95	1.0	125	3.6
144	$^{1}T_{2}$	73	1.8	-85	1.4	111	2.2
162	$_{2}ar{E}$	75	1.7	- 79	1.8	99	1,5
180	${}^{1}T_{2}$ ${}_{2}E$ ${}^{3}T_{2}$	81	1.4	<i>– 77</i>	2.0	89	1.2
198	<i>⁵E</i>	91	1.2	- 79	1.8	83	1.1
216	$^{3}T_{4}$	103	1.2	- 85	1.4	81	1.1
234	$_{\scriptscriptstyle A}E$	117	1.8	- 95	1.0	83	1.1
252	${}^{0}_{0}T_{4}$	130	2.7	- 107	1.0	89	1.2
270	υE	143	4.0	-120	1.6	99	1.5
288	${}^{0}T_{1}$	152	4.8	-134	2.9	111	2.2
306	${}^0T_1 \ {}_1E$	159	5.3	-146	3.9	125	3.6
324	$^{2}T_{1}$	161	5.5	- 155	5.3	138	5.1
342	^{2}E	159	5.3	-162	6.2	151	6.3
360	$^{2}T_{3}$	152	4.8	- 164	6.4	160	7.0

The conformational analysis of the β -galactofuranose ring was carried out following a methodology similar to that recently described by Hoffmann et al. 11 for the α -L-arabinofuranosyl residues of several arabinoxylans. The protocol consists of a comparison of the observed proton-proton vicinal coupling constants with those expected for the different conformations involved in the pseudorotational itinerary of the D-galactofuranose ring. Molecular mechanics calculations can assist in distinguishing among the different solutions of the *J*-based analysis.

It is noteworthy that the pseudorotational itinerary of β -D-galactofuranoses is analogous to that of α -L-arabinofuranoses. For comparison purposes, we have adopted the definition of Hoffman et al.¹¹, N(north)-type conformers being those characterised by negative values of C-1-C-2-C-3-C-4 torsion angles; thus, the standard N-type conformation has the maximum negative C-1-C-2-C-3-C-4 torsion angle, i.e., the 2T_3 form.

Following the discussion by Hoffmann et al., a puckering amplitude $\Phi_{\rm m}$ of $38\pm4^{\circ}$ was used to calculate the possible proton-proton torsion angles of the p-galactofuranose ring. The vicinal proton-proton coupling constants were estimated from these torsion angles by using the extended Karplus equation proposed by Altona¹². The couplings expected for the different conformations of the furanose ring $[\Phi_{\rm m}(N)=\Phi_{\rm m}(S)=40^{\circ}]$ are given in Table I.

All J-couplings in both D_2O and Me_2SO-d_6 were sufficiently resolved to extract initial δ and J values for spectral simulation. The best values of ¹H chemical shifts

TABLE II
¹ H NMR and ¹³ C NMR chemical shifts (δ, ppm) and vicinal coupling constants (J, Hz) for the
water-soluble F1S-B galactofuranan of E. crustaceum in D ₂ O and Me ₂ SO-d ₆

Atom	D ₂ O	Me ₂ SO-d ₆		oinofuranoside in arabinoxyla	ns ¹¹	
H-1	5.184	4.997				
H-2	4.128	3.814				
H-3	4.095	3.886				
H-4	4.146	3.945				
H-5	3.929	3.705				
H-6a	3.785	3.572				
H-6b	3.799	3.558				
$J_{1,2}$	2.1	2.1	0.8	1.0	1.6	
$J_{2,3}$	4.2	4.4	2.3	2.5	3.2	
$J_{3.4}^{-3.6}$	6.8	6.9	5.0	5.4	5.8	
$J_{3,4} \\ J_{4,5}$	3.4	3.1				
$J_{5,6a}$	6.2	6.3				
$J_{5,6{ m b}}$	5.0	5,1				
$J_{6a,6b}$	-12.1	-12.0				
C-1	107.8	108.1				
C-2	82.2	83.1				
C-3	77.4	78.1				
C-4	82.6	82,6				
C-5	76.5	76.2				
C-6	61.9	62.1				

and coupling constants are given in Table II along with the $^3J_{\rm H,H}$ values observed by Hoffmann et al. for different α -L-arabinofuranosyl residues in arabinoxylans. The comparison of the values for F1S-B in both solvents indicates that the furanose ring has a similar conformational equilibrium in D_2O and Me_2SO-d_6 .

The vicinal couplings for F1S-B are in all cases larger than those observed by Hoffmann et al. for arabinoxylans. According to Table I, the values of $J_{2,3}$ and mainly $J_{3,4}$ indicate a higher population of N-type conformers than those observed in arabinoxylans. In fact, the observed values are very close to those predicted by Altona's equation for the 4E form. Nevertheless, a small contribution of S-type conformers in the 1T_2 region cannot be completely ruled out.

In order to have an idea of the steric interactions for the different forms of the five-membered ring, molecular mechanics calculations using the MM2 program were carried out for the model compound methyl 5-O-methyl- β -D-galactofuranoside. According to the calculations, the 4E region is predicted to be favored, with the minimum having a geometry between the 4E and the 4T_3 form. The 1T_2 form is destabilised by 2.0 kcal/mol, while the 2T_1 conformation, which corresponds to the crystal structure of methyl α -D-galactofuranoside, is destabilised by 2.4 kcal/mol; it is not a local minimum, and converges to the 4E conformation.

Similarly to the α -L-arabinofuranosyl residues of arabinoxylans, the glycosidic oxygen adopts a pseudo-axial orientation, in agreement with the operation of the

TABLE III
Proton-proton torsion angles (°) and expected vicinal coupling constants (Hz) for the possible rotamers
of the lateral chain of the galactofuranan from E. crustaceum a

Rotamer	Ф _(H-4, H-5)	$J_{4,5}$	Ф _(О-5, О-6)	$J_{5,6S}$	$J_{5,6R}$	Population (%)
g-	-60	1.5	180	10.6	4.3	16.8
	-60	1.5	60	2.3	9.8	41.4
	-60	1.5	-60	2.1	2.3	0.2
g^+	60	4.5	180	10.6	4.3	0.1
	60	4.5	60	2.3	9.8	23.1
	60	4.5	-60	2.1	2.3	9.0
t	180	10.5	180	10.6	4.3	9.4
	180	10.5	60	2.3	9.8	0.1
	180	10.5	-60	2.1	2.3	0.2

The calculated populations from MM2 calculations are also given.

anomeric effect, while the lateral chain has a pseudo-equatorial disposition to minimise steric interactions with the ring. No intramolecular hydrogen bonding seems to be present, at least in Me_2SO-d_6 solution, since the temperature coefficients for the three hydroxyl groups are very similar (ca. 7×10^{-2} ppm/°C) and high in magnitude. Also, the $^3J_{\rm HO,H}$ values (ca. 6 Hz) indicate that there is not any preference for a particular orientation around the C-O bond of the hydroxyl groups.

Conformation of the lateral chain.—The ${}^3J_{4,5}$ value (ca. 3.3 Hz) indicates a different population for the three staggered rotamers around the C-4-C-5 bond. The expected values of J for the three possible conformations obtained by application of Altona's equations on the proton-proton torsion angles are given in Table III. Since several combinations could lead to the same J value, MM2 calculations were carried out for the possible rotations around C-4-C-5 and C-5-C-6. The results indicate a preference for the rotamer corresponding to $\Phi_{4,5} = -60$ (58%), followed by that with $\Phi_{4,5} = 60$ (32%) and by that with a trans proton-proton torsion angle (10%). The expected value for this combination agrees quantitatively with the experimental value.

Regarding the C-5-C-6 conformation, the calculations predict a conformational equilibrium 65:26:9 for the gt:tg:gg rotamers. However, the similar values of $J_{5,6a}$ and $J_{5,6b}$ are in agreement with a higher contribution of the gg rotamer. Thus, the observed J couplings can be explained by a 45:25:30 distribution of gt:tg:gg conformers.

Therefore, it can be concluded that the alkali- and water-soluble fraction of the cell-wall material of *Eupenicillium crustaceum* is a β -(1 \rightarrow 5)-galactan. Our results also indicate that the five-membered ring of this polysaccaride has less conformational freedom than that in the arabinoxylans. Nevertheless, similarly to the arabinofuranosyl residues, O-1 has a pseudo-axial orientation, in agreement with the operation of the anomeric effect, while the lateral chain adopts a pseudo-equatorial disposition, to minimise steric interactions.

The conformational study of other galactofuranose rings from different fungal cell-wall polysaccharides is presently under way.

EXPERIMENTAL

Organism and growth conditions.—Eupenicillium crustaceum Ludwig, strain CBS 635.70 was obtained from the Centraalbureau voor Schimmelcultures (Baarn, Netherlands), and maintained on slants of Bacto potato dextrose agar (Difco) supplemented with 1 g/L of yeast extract (Difco). The basal medium and growth conditions have been described¹³.

Cell-wall preparation and fractionation of wall material.—Cell walls were prepared from 5-day-old mycelium, and then dry wall material was extracted with 1 M NaOH at room temperature to give Fraction F1 as described elsewhere 14 . Fraction F1 (1 g) was further extracted with distilled water (2 × 150 mL), stirring at room temperature for 2 h each time. After centrifugation, a supernatant solution (F1S) and a precipitate (F1P) were obtained, and both of them were freeze-dried.

Gel filtration of the F1S fraction.—A solution of F1S (80 mg) in 0.3 M NaOH (1.5 mL) was centrifuged, and the supernatant solution was added to a column $(40 \times 2.6 \text{ cm})$ of Sepharose CL-6B and eluted with 0.3 M NaOH. Fractions (2 mL) were collected and monitored for carbohydrate by the phenol- H_2SO_4 method¹⁵. Appropriate fractions were pooled, dialysed against running tap water, concentrated to a small volume, and freeze-dried.

HPLC of main fraction.—A sample of the main fraction obtained by gel filtration was analysed in a Biogel TSK 40 column (300×7.5 mm) in order to determine its purity and molecular weight, eluting isocratically with 10 mM PBS in 0.308 M NaCl and detecting by the refractive index of the compounds. Various commercially available dextrans were analysed under identical conditions in order to obtain a calibration curve, from which the $M_{\rm W}$ of the sample was extrapolated.

Chemical analysis.—The polysaccharides F1S and F1S-B were hydrolysed with 0.05 M H₂SO₄ for 5 h at 100°C to release sugars in the furanose configuration, and by Saeman hydrolysis¹⁶. The neutral sugars, converted into their corresponding alditol acetates¹⁷, were identified and quantified by GLC as described previously ¹⁸.

Periodate oxidation was carried out according to Aspinall and Ferrier¹⁹. The oxidised polysaccharide was subjected to Smith degradation and the products were analysed by GLC as the alditol acetates.

The IR spectrum was obtained by the KBr technique with a Perkin-Elmer 1420 ratio recording infrared spectrophotometer.

Methylation analysis.—Methylation of the sample was performed using a modification²⁰ of the Hakomori method²¹. The methylated fraction was hydrolysed, reduced with NaBD₄, acetylated, and analysed by GLC and GLC-MS as previously described¹⁴.

NMR spectroscopy.—NMR spectra were recorded at 80°C with a Varian XL-300 spectrometer. Proton chemical shifts in D₂O were referenced to residual HDO at

 δ 4.24 ppm. Proton chemical shifts in Me₂SO- d_6 were referenced to residual Me₂SO- d_5 at δ 2.49 ppm. Carbon chemical shifts in D₂O were referenced to internal dioxane at δ 67.4 ppm. Carbon chemical shifts in Me₂SO were referenced to residual Me₂SO- d_5 at 39.5 ppm.

2D Experiments were performed using the standard Varian software. The pure absorption 2D NOE spectrum was obtained using a mixing time of 300 ms. In both cases, data matrices of 256×512 points were used to resolve a spectral width of 1000 Hz. Shifted sine-bell functions were applied for processing in both dimensions. Zero-filling was used to expand the data to 512×1 K points. The relaxation delay was always set to 2 s.

The values of chemical shifts and coupling constants measured from the COSY and 1D spectra were refined by spectral simulation using the PANIC program (Bruker software).

The carbon-proton one-bond shift correlation spectrum was obtained in the 13 C-detection mode using F_1 -decoupling. Proton decoupling during acquisition was achieved by the WALTZ scheme. 128 FIDs were collected, each consisting of 512 data points. The refocussing delay corresponded to J 145 Hz and the relaxation delay was set to 1.5 s.

Molecular mechanics calculations were carried out using the MM2 program.

The X-ray coordinates of methyl α -p-galactofuranoside were used as the starting point and modified as desired²². A dielectric constant of 1.5 D was used. All the possible arrangements of the O-4/O-5 and C-4/O-6 torsion angles were considered.

ACKNOWLEDGMENT

This work was supported by Grant PB 87/0243 (Dirección General de Investigación Científica y Técnica).

REFERENCES

- 1 S. Bartnicki-Garcia, Annu. Rev. Microbiol., 22 (1968) 87-108.
- 2 S. Notermans, G.H. Veeneman, C.W.E.M. van Zuylen, P. Hoogerhout, and J.H. van Boom, Mol. Immunol., 25 (1988) 975-979.
- 3 H.J. Kamphuis, S.H.W. Notermans, G.H. Veeneman, J.H. van Boom, and F.M. Rombouts, NATO ASI Ser., H53 (1991) 157-167.
- 4 E.M. Barreto-Bergter, L.R. Travassos, and P.A.J. Gorin, Carbohydr. Res., 86 (1980) 273-285.
- 5 M. Ogura, T. Kohama, M. Fujimoto, A. Kuminaka, H. Yoshino, and H. Sugiyama, Agric. Biol. Chem., 38 (1974) 2563-2564.
- 6 J.A. Leal, C. Guerrero, B. Gomez-Miranda, A. Prieto, and M. Bernabe, FEMS Microbiol. Lett., 90 (1992) 165-168.
- 7 B. Gomez-Miranda, A. Moya, and J.A. Leal, Exp. Mycol., 10 (1986) 184-189.
- 8 S.A. Bakker and R. Stephens, J. Chem. Soc., (1954) 4550-4555.
- 9 K. Bock and C. Pedersen, Adv. Carbohydr. Chem. Biochem., 41 (1983) 27-66.
- 10 P.A.J. Gorin and M. Mazurek, Carbohydr. Res., 48 (1976) 171-186.
- 11 R.A. Hoffmann, J. van Wijk, B.R. Leeflang, J.R. Kamerling, C. Altona, and J.F.G. Vliegenthart, J. Am. Chem. Soc., 114 (1992) 3710-3714.

- 12 C.A.G. Haasnoot, F.A.A.M. de Leeuw, and C. Altona, Tetrahedron, 36 (1980) 2783-2792.
- 13 J.A. Leal, A. Moya, B. Gomez-Miranda, P. Ruperez, and C. Guerrero, FEMS Symp. Proc., 27 (1984) 149–155.
- 14 B. Gomez-Miranda, A. Prieto, and J.A. Leal, FEMS Microbiol. Lett., 70 (1990) 331-336.
- 15 M. Dubois, K.A. Gilles, J.K. Hamilton, P.A. Rebers, and F. Smith, Anal. Chem., 28 (1956) 350-356.
- 16 G.A. Adams, Methods Carbohydr. Chem., 5 (1965) 269-276.
- 17 R.A. Laine, W.J. Esselman, and C.C. Sweeley, Methods Enzymol., 28 (1972) 159-167.
- 18 B. Gomez-Miranda, P. Ruperez, and J.A. Leal, Curr. Microbiol., 6 (1981) 243-246.
- 19 G.O. Aspinall and R.J. Ferrier, Chem. Ind. (London), (1957) 1216.
- 20 P.-E. Jansson, L. Kenne, H. Liedgren, B. Lindberg, and J. Lönngren, Chem. Commun. Univ. Stockholm, 8 (1976).
- 21 S. Hakomori, J. Biochem. (Tokyo), 55 (1964) 205-208.
- 22 P. Groth, B. Klewe, and A. Reine, Acta Chem. Scand., 30 (1976) 948.